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Neoclassical energy confinement times in 1 = 2 stellarators and tokamaks with and aithotit 
ripple are computed by Monte Carlo simulation over wide ranges of mean free paths, ratios oi 
plasma to gyro radius, and radial electric fields. In parameter ranges which allow computatton 
of a local neoclassical heat conduction. this quantity is also obtained by Monte Carlo 
simulation and related to the energy conhnement. The plateau, 11-t. v’ ‘, and v regimes are 
discussed. cm 1987 Academic Press, Inc. 

1. INTRODUCTION 

In this paper, Monte Carlo methods developed previously Cl-31 for calculating 
neoclassical heat conductivity in stellarators are generalized to the calculation of 
energy confinement times for stellarators. This generalization allows one to treat 
not only the limiting case of a large ratio QP of plasma radius a to gyro radius p in 
which a local transport coefftcient can be calculated, but also cases in which the 
gyro radius is too large for a strictly local transport coefficient to exist. A simple 
criterion for the non-existence of local heat conductivity is the loss of test particles 
before a heat conduction coefficient can be calculated from the spatial broadening 
of an initially localized distribution of test particles. For mean free paths larger than 
the connection length, this behaviour is seen for values of Q, of the order of 10’. 
Experimentally, Qp is of the same order for thermal ions in existing stellarators 
(W VII A and Heliotron), in stellarators currently being built (W VII AS, ATF), 
and probably also in next-generation stellarators (e.g., W VII X), so that it is 
important to assess the effects of a finite value of Q, [4]. The effect of an electric 
field is important for the local heat conductivity in the long mean free path (lmfp) 
regime since it changes the collisionless particle orbits; for the computation of 
energy confinement times the effects of an electric field are even more important, 
since, in addition, it governs the spatial profile of the test particle distribution 
function. Therefore, an electric field F is included in the form of an electric potential 
4 which is constant on magnetic surfaces. As in earlier work. the problem of Monte 
Carlo simulation of the transport properties is alleviated by the assumption of a 
monoenergetic test particle distribution with energy E. The basic tool used is the 
Fowler-Rome-Lyon code [3], which, because it is formulated in magnetic coor- 
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dinates [S], allows an electric potential more easily than the Monte Carlo code in 
Cartesian coordinates [2]. Detailed tests (without electric field) have shown 
complete agreement between the results of these two codes if a sufficient number of 
Fourier coefficients representing IBl in magnetic coordinates are taken into 
account [6]. 

This paper is organized as follows. Section 2 describes the Monte Carlo 
procedure which yields a stationary test particle distribution and an associated 
energy confinement time. In Section 3 results are obtained for I= 2 stellarators. In 
the appropriate regions of mean free path and value of QP, the diffusion coefficient 
and energy confinement time are related to each other. The so-called 1’ regime (i.e., 
the very long mean free path regime) is investigated and the result is explained in 
terms of a model for the loss-cone-dominated distribution function. In Section 4 an 
electric field ‘is taken into account and the collision operator is appropriately com- 
plemented. The effect of the potential on the loss rate in the plateau regime is dis- 
cussed. In Section 5 results are presented for I= 2 stellarators, with electric fields 
taken into account. Results for more general stellarators are obtained without 
changes in the procedure, since only a different Fourier structure of JB( has to be 
used as input for the Monte Carlo code. Some results for more general stellarators 
are contained in [7] and will be presented in a subsequent paper. 

2. STATIONARY DISTRIBUTION AND ENERGY CONFINEMENT TIME 

If the value of QP is sufficiently large, a local heat conduction coefficient can be 
calculated with the help of Boozer’s Monte Carlo equivalent of the pitch angle scat- 
tering operator. The results can be presented in a normalized way [2] and are 
briefly repeated here for tokamaks without and with ripple and for I= 2 stellarators. 
A dimensionless mean free path L* is used: 

L*=AlL,, L,=xR~/I, (2.1) 

where -4 is the mean free path, L, half the connection length, R, the major torus 
radius, and I the rotational transform (or twist) on the magnetic surface considered. 
A dimensionless transport coefficient D* is introduced by 

D*=D/D,, (2.2) 

where D, is the plateau value 

Dp=0.64f-%().64 "' 
12Lc -, l?TR, (2.31 

(,7= (2,qmj’9 being the particle velocity and p = mu/e& the formal gyro radius, 
where L), is the main magnetic field at R,. 



ENERGY CONFINEMENT IN STELLARATORS 75 

With these normalizations, the Pfirsch-Schliiter regime, the tokamak banana 
regime, and the ripple regime are given, respectively, by 

where ,4 = R, Jr is the aspect ratio of the magnetic surface considered an 
effective ripple. 

For an I= 2 stellarator of N field periods, a more precise representation of ripple 
transport is given by 

D; = 2.33A-'.35&k - * (2.5) 

for 10 d A <40, 0.25 d I < l.O> 5 <N< 19. 
An alternative affording wider applicability is to assess the neoclassical ion 

behaviour by computing an energy confinement time T (or, equivalently, a loss rate 
S= 3/r) from an asymptotic stationary distribution which is obtained as fool%ows. 
Only scattering with a uniform background plasma is considered, so that a con- 
stant value of mean free path for pitch angle scattering is assumed throughout the 
plasma volume. A particle carrying energy across the boundary of this volume is 
replaced by another particle with the same initial energy E in such a way t 
particle (with mdex ni) of the remaining test distribution is doubled and from then 
on treated as statistically independent. The particle to be doubled is selected 
according to a cyclic procedure 

ni=(ni-,+kqJ modulo 64 (2.6) 

for a test distribution which comprises 64 particles. Here, n,- i is the index of the 
particle which was doubled last. The cycle number kcyc has to be relative prime to 
the number of particles. By this procedure a stationary solution is asymptotically 
obtained and corresponds to the slowest decay mode of the drift kinetic equation 
w%hout source term. The decay rate of this mode corresponds to the ante Carlo 
replenishment rate and is equivalent to the energy loss rate. Asymptotically in time 
the procedure described is equivalent to a particle source function proportional to 
the distribution function (see also Eq. (3.4)). 

A stationary distribution obtained in this way is shown in Fig. 1. In co~j~~ctio~ 
with this distribution, the foliowing plateau loss rate is found: 

Comparison of Eqs. (2.3) and (2.7) yields the well-known result ES] 

Dp a2 -= - 
c ‘i sp 2.4, 5 
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FIG. 1. Stationary distribution function Jo($) in a tokamak in the plateau regime. The distribution 
was obtained from the asymptotic behaviour in time ( lo5 collision times). L* = 10. Q, = 103, &,/a = 10, 
I = 0.5. 

which may also be considered as a validation of the Monte Carlo proxdure for 
obtaining this loss rate. It is useful to keep the following sets of numbers in mind: 

E(deuterons)=lOkeV, a=lm, R=lOm, B=5T, 1=0.5, S,z4sec-‘; 

E(protons)=3 keV, a=0.5m, R= 5 m, B= 3 T, z-0.5, SPz9 set-‘. 

In a way analogous to Eq. (2.2), normalized loss rates can be introduced by 

s* = s/s,. (2.9) 
For the Pfirsch-Schliiter, banana, and, in the case of a rippled tokamak, ripple 
regimes, results completely analogous to Eq. (2.4) are found: 

s;s = l/L*; S; z AL.S/L*; SE = 1.65 c?;.~L*. (2.10) 

Figure 2 shows these results. 

IO4 IO" lOi 10 I I 
I - 

FIG. 2. Normalized loss rates in a tokamak without and with ripple. QP = 103, R,/u = 10, I = 0.5, 
6, = 0.02. 
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FIG. 3. Normalized loss rates in an I= 2 stellarator for Q, = 50 (0 ). 200 (+ ), and 1000 ( x ). 
R,;a=8.6, M=5, r=OS, 6,~0.02 (at aspect ratio A= 17). 

3. RESULTS FOR I= 2 STELLARATORS WITHOUT ELECTRIC FIELD 

Results analogous to those for rippled tokamaks are found for Z= 2 stellarators 
and shown in Fig. 3. The ripple regime can be described by (compare Eq. (2.5)) 

S; z. 2.33(2A)-2.35 zNL* = 0.46Ap2.‘5 tNL*. (3.1) 

The curves in Fig. 3 show the behaviour of the loss rate in the very long mean free 
path regime, where, for the plasma to gyro radius ratio chosen, a local transport 
coefficient no longer exists. In good approximation this so-called v regime is 
given by 

s v ” “N- = Y, 
A 

(3.2) 

v being the collision frequency. This result can be understood in the framework of 
the following simplified model. A magnetic surface is characterized by its ripple b 
given by Bmin and B,,, and delining a boundary in velocity space 

(3.3) 

In simplified mirror theory, the distribution function f(x) vanishes for xb d x d 1, 
analogously in stellarators without electric field for 0 <x <xb. The stationary 
solution f(x) is obtained by solving the eigenvalue problem 

%1.73;1-6 

(3.4) 
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FIG. 4. (a) Typical mirror distribution function f(s), x= o,,/L’, in the loss cone regime for 

4w.l&un = 10. (b) Typical stellarator or rippled tokamak distribution function J‘(xj, x= o,,/P, in the 
loss cone regime for 3 = 0.10. 

for the source strength CI with the boundary conditions f(xt,) = 0 and f’(0) = 0 for 
the mirror and f(1) = 1 for the stellarator. Figure 4 shows these distribution 
functions in the mirror case for B maxlBmin = 10 and in the stellarator case for 
6 = 0.10. Figure 5 shows the normalized confinement time T/Z, = 2/cr in the mirror 
case as a function of the logarithm of the mirror ratio and in the stellarator case as 
a function of ripple. In the present context of f=2 stellarators with 6, 5 0.1, the 
loss rate is given in good approximation by the collision frequency. Figure 6 shows 
a histogram of a distribution f($,,, x) A$, where tjO was chosen such that 6 = 0.1. 

Comparison of the v, ripple, and plateau regimes yields the following boundaries 
between these regimes: 

L& zz 0.78Q,A ‘.‘(z/N)~.‘, (3.5) 

L& hN 2.2A2.3i/zN, (3.6) 

L$ z 0.28Q; 12, (3.7) 

as obtained from the asymptotic dependences. Hence, a quite large value of 
QP Z 2.8A1.2/z’.iN0.5 is required for the ripple regime to exist. The actual results, in 

a b 

FIG. 5. (a) Mirror confinement times normalized to the collision time versus Bmax/Bmio. 
(b) Stellarator or rippled tokamak confinement times normalized to the collision time versus ripple 6. 
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FIG. 6. Stationary distribution function f(x), x = cl,/ L’, in the v regime for a rippled tokamak. 
L” = lo’, 20 follision times, Q, = 100, R,Ja = 7, l= 0.5, 6, = 0.10, t,!t = 0.3. 

which the transitions between the regimes are gradual, show that only for QP > 10’ 
does an increase of the losses due to ripple effects become evident. On the other 
hand, Eq. (3.5) shows that the maximum loss rate 

S;,, x 0.36Q, A ~- 1.2z1.51vo.5 (3.8) 

becomes substantially larger than the plateau loss for sufficiently large QP, i.e., for 
electrons. 

4. LOCAL TRANSPORT COEFFICIENTS WITH ELECTRIC FIELD 

An important effect of the electric field is its influence on the collisionless orbits of 
the localized particles [9]. These orbit changes cause the transition from the ripple 
regime to the so-called v and \qiiz regimes. The Monte Carlo simulations of the local 
transport coefficient yield, for I = 2 stellarators, the following results in these 
regimes: 

(4.3) 

where p is the formal gyro radius, E the kinetic particle energy, and v* = l/L*. F is 
the electric field on the magnetic surface considered, which has aspect ratio A and 
twist 1; F is related to the potential 4 = &( 1 - $) by F= &,2r/a2, where r is the for- 
mal radius of the magnetic surface with normalized flux I+$. Figure 7 shows results 
for QP = 104. Equations (4.1) through (4.3) are in accordance with previous 
analytical results [9] and are valid for H > 10. In particular, the dependence of the 
transitions from both the v-l to l!li2 regimes and the vii2 to v regimes is given by 



80 LOTZ,NijHRENBERG, AND SCHLiiTER 

D’ 

, 6 
I to , , 

.oi -e--,--t---- ! 
lOb 104 103 10Z IO I 

L- 

FIG. 7. Normalized transport coefficient D*(L*) in an I= 2 stellarator for Q., = lo4 and various elec- 
tric fields; e&,/E=0 ix), +4 (+,-), k8 (Cl), ?I6 (O), H=137, 68, 34. A=1?.5, N=5, r=O.5, 
s, cc 0.03. 

v* cc e&J@,, so that these transitions occur in the long mean free path regime for 
electrons. On the other hand, the location of the transitions is proportional to the 
potential &,. For example, the transition from the v-’ to the vliz regime is given by 

(4.4) 

If a formal diffusion coefficient is associated with the loss rate found in the v regime 
without electric field, Eq. (3.2), it is easy to see that this Y regime is suppressed if 
e&,/E> 1.9 u/R,. Finally, comparison with the transport coefficient in the tokamak 
banana regime, Eq. (2.4), shows that large potentials in units of the particle energy 
are needed to approach the neoclassical loss in a tokamak without ripple. 

5. Loss RATES WITH ELECTRIC FIELD 

With an applied electric field, several basic points have to be observed. 
First, the associated poloidal rotation velocity t’P at the plasma boundary is 

governed by 

up- edo 
Y-zg’ (5.1) 

so that for e&,/E= 1 the rotation is always slow as compared with thermal 
velocities. which case is considered here. 
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Second, the resonant poloidal velocity tlpres = zo,,/A, which destroys the COD- 
finement of passing particles, only occurs if 

do laQ -= 2, 
E R 

(5.2) 

i.e., H= 1 (Eq. (4.3)) corresponding to quite large potentials in units of the particle 
energy. Monte Carlo simulations of this case are not considered in the present 
paper. In particular, the potential is too small for the resonance to occur in the 
results described in Section 4. 

Third, to calculate loss rates according to the scheme described in Section 4: the 
pitch angle collision operator has to be supplemented by an energy collision 
operator w.hich keeps the particle kinetic energy an approximate constant. For if 
the total energy were conserved, the electrostatic confinement properties would 
dominate the behaviour of the test particle distribution function. Here, the kinetic 
energy is relaxed with the same time constant which governs the pitch angle 
scattering: 

xn,w = X,ld (1-d)f [(I -x~,d)Ll]*;2, (5.3) 

E new = ‘%ld + (E - ‘%,d) A, (5.4) 

where A = At/z,,. (AC time step) and x,,~, x,,~ are the values of the pitch angle and 
E”W 7 Void the values of the kinetic energy, E being the initial kinetic energy of the 
test particle. This procedure results in thermodynamic equilibrium of the test 
particle distribution f in the applied potential 4, i.e., f = f. exp( - e#/E), where fO is 
the distribution without applied electric potential. Figure 8 shows stationary 
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FIG. 8. Stationary distribution functions f(G) with and without electric field in a tokamak in the 
plateau regime; q&/E=0 (0), +2 (+,--), H=25. L* = 10, Qp= 103, R,/a=lO, z=OS, IO5 collision 
times. 
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distributions in the tokamak plateau regime which indeed verify this behaviour. 
Obviously, the condition of quasi-neutrality is not taken into account in the 
framework of this treatment, so that a cautious interpretation is needed. Since for a 
given transport coefficient the loss rate is proportional to the gradient at the plasma 
edge, the loss rate (in contrast to the local transport coefficient) depends on the 
sign of the electric field: the “attracting” potential (e& < 0) results in a smaller loss 
than without electric field, the “repelling” potential (e& > 0) in a larger one. 
Figure 9 shows these results for a rather large value of QP = 500, where the notion 
of a local gradient at the boundary applies. Numerically, S+(eq&,/E= +2)/ 
S-(e&/E= -2) z 13 is found, which is quite close to the theoretical value 

$=exp(4) J u2.4 &I exp(-WI d* 

I ~,(2.4&exp(f211) d*' 
(5.5) 

this being 15.6. From Fig. 9 it is also seen that the difference in loss rates becomes 
less pronounced with increasing mean free path. The ordering relation 

St<D;<S*, (5.6) 

remains satisfied. Here 0: is the local transport coefficient with electric field, which, 
for the case of the axisymmetric tokamak, does not depend on the sign or 
magnitude of the electric field applied. 

Analogous results are found for I = 2 stellarators (see Fig. IO), in which all three 
quantities SC, DF, and S*, are obtained for QP = 500. In the lmfp regime the 
improvement as compared with the loss rate without electric field is of the order 
lo*, i.e., the confinement time is lo* collision times, irrespective of the sign of the 
potential. 

IO I 

S’ 
0’ 

+ + i 

FIG. 9. Normalized loss rates S* (+, -) in a tokamak with e&,/E = +2, Q, = 500, R,/a = 10, 
l= 0.5. In addition, the normalized transport coeffXent D* ( x ) (which is independent of the electric 
field) is shown; Q, = 500, A = 10, I = 0.5, H = 21. The dashed curve represents the banana regime with 
D: = A3!‘/L* (Eq. (2.4)). 
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Ftc. 10. Normalized loss rates S* (+, -) in an I= 2 stellarator with e&/E= k?, 4, = 500, 
R,la=8.6, N=5, z=OS, cJew - 0.02 (at A = 17). In addition, the corresponding normalized transport 
coefftcient D* ( x ) (which does not depend on the sign of the electric field) is shown: Q, = 500, A = 12.5. 
N=5, 1=0.5, H= 14, 6 5 2 0.03. The Y t and v regimes are also indicated. 

6. CONCLUSION 

It is shown that Monte Carlo methods can be successfully applied to the com- 
putation of neoclassical transport coefficients as well as neoclassical confinement 
times over wide ranges of mean free paths and ratios of plasma to gyro radius 
without and with radial electric field. Although the condition of quasi-neutrality has 
not yet been taken into account, the results obtained in the long mean free path 
regime suggest that ion confinement is sufficiently improved with an electric poten- 
tial of the order of the particle energy. Thus, the contribution of electron-electron 
collisions to neoclassical energy confinement will be of comparable importance; see 
Eqs. (3.5) and (4.3). 

In this paper, only results on tokamaks without and with ripple and i= 2 
stellarators are presented. Results for advanced stellarators with a more com- 
plicated Fourier structure of IB/ can be obtained without any changes in the 
computational procedures described. Preliminary results for the W VII AS and the 
Helias stellarators have already been obtained [7] and will be discussed in fnture 
work. 

ACKNOWLEDGMENTS 

We are indebted to R. H. Fowler, J. F. Lyon, and J. A. Rome for providing us with their Monte Carlo 
code. 



84 LOTZ, NmENBERG, AND SCHLiiTER 

REFERENCES 

1. A. H. BRAZER AND G. KUO-F’ETRAVIC, Phys. Fluids 24, 851 (1981). 
2. W. LOTZ AND J. NUHRENBERG, Z. Narurforsch. A 37, 899 (1982); W. DOMMASCHK, W. LOTZ, AND 

J. NUHRENBERG, Nucl. Fusion 24, 794 (1984). 
3. R. H. FOWLER, J. A. ROME, AND J. F. LYON, Phys. Fluids 28, 338 (1985). 
4. H. WO~IG, Z. Naturforsch. A 37, 906 (1982). 
5. G. KUO-F’ETRAVIC, A. H. BOOZER, J. A. ROME, AND R. H. FOWLER, J. Comput. Phys. 51, 261 (1983). 
6. ZPP Atmual Report 1984 (Max-Planck-Institut fiir Plasmaphysik, Garching bei Miinchen, 1985), 

p. 119. 
7. ZPP Annual Reporf I985 (Max-Planck-Institut fiir Plasmaphysik, Garching bei Miinchen, 1986j. 

p. 140. 
8. K. MIYAMOTO, Plasma Physics for Nuclear Fusion (MIT Press, Cambridge, MA, 1980), p. 198. 
9. H. E. MYNICK, Phys. Fluids 26, 2609 (1983). 


